Electrical Properties and Strain Sensing Mechanisms in Hybrid Graphene Nanoplatelet/Carbon Nanotube Nanocomposites
Electrical and electromechanical properties of hybrid graphene nanoplatelet (GNP)/carbon nanotube (CNT)-reinforced composites were analyzed under two different sonication conditions. The electrical conductivity increases with increasing nanofiller content, while the optimum sonication time decreases...
Gespeichert in:
Veröffentlicht in: | Sensors (Basel, Switzerland) Switzerland), 2021-08, Vol.21 (16), p.5530 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Electrical and electromechanical properties of hybrid graphene nanoplatelet (GNP)/carbon nanotube (CNT)-reinforced composites were analyzed under two different sonication conditions. The electrical conductivity increases with increasing nanofiller content, while the optimum sonication time decreases in a low viscosity media. Therefore, for samples with a higher concentration of GNPs, an increase of sonication time of the hybrid GNP/CNT mixture generally leads to an enhancement of the electrical conductivity, up to values of 3 S/m. This means that the optimum sonication process to achieve the best performances is reached in the longest times. Strain sensing tests show a higher prevalence of GNPs at samples with a high GNP/CNT ratio, reaching gauge factors of around 10, with an exponential behavior of electrical resistance with applied strain, whereas samples with lower GNP/CNT ratio have a more linear response owing to a higher prevalence of CNT tunneling transport mechanisms, with gauge factors of around 3–4. |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s21165530 |