Adjustability and Stability of Flow Control by Periodic Forcing: A Numerical Investigation
The efficient and stable application of periodic forcing for drag-reduction can help underwater vehicles operate at high speed for long durations and improve their energy-utilization efficiency. This study considers flow control around a body-of-revolution model subjected to periodic blowing or suct...
Gespeichert in:
Veröffentlicht in: | Journal of marine science and engineering 2024-09, Vol.12 (9), p.1613 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The efficient and stable application of periodic forcing for drag-reduction can help underwater vehicles operate at high speed for long durations and improve their energy-utilization efficiency. This study considers flow control around a body-of-revolution model subjected to periodic blowing or suction through annular slots. The focus is on the boundary-layer structure, properties, and drag of the control fluid under a wide range of body variables (size, free-flow velocity, slot area, and blowing/suction velocity) and control parameters (normalized periodic-forcing amplitude and relative slot sizes). Body variables differ in their effects on the drag-reduction rate, with the surface pressure pushing the model vehicle when S and v are higher than S0 and v0. In particular, the lowest pressure drag was −26.4 N with v increasing, and the maximum drag-reduction rate of total drag exceeded 135%. At a fixed Reynolds number, increasing the values of the control parameters leads to larger-scale unstable vortex rings downstream from the slots; the surface-velocity gradient is reduced, effectively lowering the drag. A simple model relating the periodic fluctuation of pressure drag to the body variables is developed through quantitative analysis and used to determine navigational stability. |
---|---|
ISSN: | 2077-1312 2077-1312 |
DOI: | 10.3390/jmse12091613 |