Causes and prevention of tamoxifen-induced accumulation of triacylglycerol in rat liver

Tamoxifen can induce hepatic steatosis in women. In this study, we wanted to elucidate the mechanism behind the tamoxifen-induced accumulation of triacylglycerol in liver in female rats, and we hoped to prevent this development by combination treatment with the modified fatty acid tetradecylthioacet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of lipid research 2006-10, Vol.47 (10), p.2223-2232
Hauptverfasser: Gudbrandsen, Oddrun Anita, Rost, Therese Halvorsen, Berge, Rolf Kristian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tamoxifen can induce hepatic steatosis in women. In this study, we wanted to elucidate the mechanism behind the tamoxifen-induced accumulation of triacylglycerol in liver in female rats, and we hoped to prevent this development by combination treatment with the modified fatty acid tetradecylthioacetic acid (TTA). The increased hepatic triacylglycerol level after tamoxifen treatment was accompanied by decreased acetyl-coenzyme A carboxylase (ACC) and FAS activities, increased glycerol-3-phosphate acyltransferase (GPAT) activity, and a tendency to increased diacylglycerol acyltransferase (DGAT) activity. The activities and mRNA levels of enzymes involved in β-oxidation, ketogenesis, and uptake of lipids from liver were unaffected by tamoxifen, whereas the uptake of lipoproteins was unchanged and the uptake of fatty acids was decreased. Combination treatment with tamoxifen and TTA (Tam+TTA) normalized the hepatic triacylglycerol level and increased the activities of ACC, FAS, GPAT, and DGAT compared with tamoxifen-treated rats. The activities and mRNA levels of enzymes involved in β-oxidation, ketogenesis, and uptake of lipids were increased after Tam+TTA treatment. In conclusion, tamoxifen increased the hepatic triacylglycerol level, probably as a result of increased triacylglycerol biosynthesis combined with unchanged β-oxidation. The tamoxifen-induced accumulation of triacylglycerol was prevented by cotreatment with TTA, through mechanisms of increased mitochondrial and peroxisomal β-oxidation.
ISSN:0022-2275
1539-7262
DOI:10.1194/jlr.M600148-JLR200