Embryonic stem cells: protein interaction networks
Embryonic stem cells have the ability to differentiate into nearly all cell types. However, the molecular mechanism of its pluripotency is still unclear. Oct3/4, Sox2 and Nanog are important factors of pluripotency. Oct3/4 (hereafter referred to as Oct4), in particular, has been an irreplaceable fac...
Gespeichert in:
Veröffentlicht in: | Biomolecular concepts 2011-04, Vol.2 (1-2), p.13-25 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Embryonic stem cells have the ability to differentiate into nearly all cell types. However, the molecular mechanism of its pluripotency is still unclear. Oct3/4, Sox2 and Nanog are important factors of pluripotency. Oct3/4 (hereafter referred to as Oct4), in particular, has been an irreplaceable factor in the induction of pluripotency in adult cells. Proteins interacting with Oct4 and Nanog have been identified via affinity purification and mass spectrometry. These data, together with iterative purifications of interacting proteins allowed a protein interaction network to be constructed. The network currently includes 77 transcription factors, all of which are interconnected in one network. In-depth studies of some of these transcription factors show that they all recruit the NuRD complex. Hence, transcription factor clustering and chromosomal remodeling are key mechanism used by embryonic stem cells. Studies using RNA interference suggest that more pluripotency genes are yet to be discovered via protein-protein interactions. More work is required to complete and curate the embryonic stem cell protein interaction network. Analysis of a saturated protein interaction network by system biology tools can greatly aid in the understanding of the embryonic stem cell pluripotency network. |
---|---|
ISSN: | 1868-5021 1868-503X 1868-5021 |
DOI: | 10.1515/bmc.2011.008 |