Impact of the 7-bp deletion in HvGA20ox2 gene on agronomic important traits in barley (Hordeum vulgare L.)

Alike to Reduced height-1 (Rht-1) genes in wheat and the semi dwarfing (sd-1) gene in rice, the sdw1/denso locus involved in the metabolism of the GA, was designated as the 'Green Revolution' gene in barley. The recent molecular characterization of the candidate gene HvGA20ox2 for sdw1/den...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC plant biology 2017-11, Vol.17 (Suppl 1), p.181-10, Article 181
Hauptverfasser: Teplyakova, Serafima, Lebedeva, Marina, Ivanova, Nadezhda, Horeva, Valentina, Voytsutskaya, Nina, Kovaleva, Olga, Potokina, Elena
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Alike to Reduced height-1 (Rht-1) genes in wheat and the semi dwarfing (sd-1) gene in rice, the sdw1/denso locus involved in the metabolism of the GA, was designated as the 'Green Revolution' gene in barley. The recent molecular characterization of the candidate gene HvGA20ox2 for sdw1/denso locus allows to estimate the impact of the functional polymorphism of this gene on the variation of agronomically important traits in barley. We investigated the effect of the 7-bp deletion in exon 1 of HvGA20ox2 gene (sdw1.d mutation) on the variation of yield-related and malting quality traits in the population of DHLs derived from cross of medium tall barley Morex and semi-dwarf barley Barke. Segregation of plant height, flowering time, thousand grain weight, grain protein content and grain starch was evaluated in two diverse environments separated from one another by 15° of latitude. The 7-bp deletion in HvGA20ox2 gene reduced plant height by approximately 13 cm and delayed flowering time by 3-5 days in the barley segregating DHLs population independently on environmental cue. On other hand, the sdw1.d mutation did not affect significantly either grain quality traits (protein and starch content) or thousand grain weight. The beneficial effect of the sdw1.d allele could be associated in barley with lodging resistance and extended period of vegetative growth allowing to accumulate additional biomass that supports higher yield in certain environments. However, no direct effect of the sdw1.d mutation on thousand grain weight or grain quality traits in barley was detected.
ISSN:1471-2229
1471-2229
DOI:10.1186/s12870-017-1121-4