Exact bounds for (λ,n)–stable 0-1 matrices
Consider a v × v (0, 1) matrix A with exactly k ones in each row and each column. A is (λ, n)–stable, if it does not contain any λ × n submatrix with exactly one 0. If A is (λ, n)–stable, λ, n ≥ 2, then under suitable conditions on A, v ≥ k k(n−1)+(λ−2) . The case n λ−2 of equality leads to new and...
Gespeichert in:
Veröffentlicht in: | Transactions on combinatorics 2020-09, Vol.9 (3), p.171-180 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Consider a v × v (0, 1) matrix A with exactly k ones in each row and each column. A is (λ, n)–stable, if it does not contain any λ × n submatrix with exactly one 0. If A is (λ, n)–stable, λ, n ≥ 2, then under suitable conditions on A, v ≥ k k(n−1)+(λ−2) . The case n λ−2 of equality leads to new and substantive connections with block designs. The previous bound and characterization of (λ, 2)–stable matrices follows immediately as a special case. |
---|---|
ISSN: | 2251-8657 2251-8665 |
DOI: | 10.22108/toc.2020.120320.1692 |