Bioinformatics Analysis Identifies Potential Ferroptosis Key Gene in Type 2 Diabetic Islet Dysfunction
BackgroundIslet β cells dysfunction (IBCD) is a cortical component in pathogenesis of type 2 diabetic mellitus (T2DM). However, the relationship of ferroptosis and IBCD remains unknown. This study was aimed to screen potential ferroptosis key genes to reveal latent physiological and pathological pro...
Gespeichert in:
Veröffentlicht in: | Frontiers in endocrinology (Lausanne) 2022-07, Vol.13, p.904312-904312 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | BackgroundIslet β cells dysfunction (IBCD) is a cortical component in pathogenesis of type 2 diabetic mellitus (T2DM). However, the relationship of ferroptosis and IBCD remains unknown. This study was aimed to screen potential ferroptosis key genes to reveal latent physiological and pathological process of IBCD in T2DM. MethodsFirstly, T2DM key genes were screened by combining with differentially expressed genes (DEGs) analysis and WGCNA. Then, ferroptosis-related genes (FRGs) in IBCD of T2DM were identified by taking the intersection between T2DM key genes and FRGs. Finally, T2DM-FRGs were validated in another T2DM dataset as well as islet single-cell RNA sequencing dataset and the miRNA regulated T2DM-FRG was predicted by using four miRNA databases. Results89 T2DM key genes were identified between DEGs and WGCNA. Then, 3 T2DM-FRGs were screened by taking the intersection of T2DM key genes and FRGs, namely ITGA6, MGST1 and ENO2. At last, MGST1 were validated as the T2DM-FRG in another T2DM islet issues dataset and islet single-cell RNA sequencing dataset. ConclusionMGST1 may be the potential ferroptosis key gene of IBCD in T2DM. |
---|---|
ISSN: | 1664-2392 1664-2392 |
DOI: | 10.3389/fendo.2022.904312 |