Presenting an integrated spatial-based model for flood hazard zoning, a case study: Maneh and Samalqan County

Due to the increase in the occurrence of floods, especially in the cities, and the emergence of human, financial, and environmental risks due to its increase, the flood zoning areas are of great importance. Therefore, in this study, it was tried zoning the areas of floods with the help of determinin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:مخاطرات محیط طبیعی 2022-05, Vol.11 (31), p.173-192
Hauptverfasser: Parham Pahlavani, Mohamad Hasanloo, Behnaz Bigdeli, Seyed Ahmad Eslaminezhad
Format: Artikel
Sprache:per
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Due to the increase in the occurrence of floods, especially in the cities, and the emergence of human, financial, and environmental risks due to its increase, the flood zoning areas are of great importance. Therefore, in this study, it was tried zoning the areas of floods with the help of determining effective criteria. The criteria used in this research include Modified Fournier Index, Topographic Position Index, Curve Number, Flow Accumulation, Slope, Digital elevation model, Topographic Wetness Index, Vertical Overland Flow Distance, Horizontal Overland Flow Distance, and Normalized difference vegetation index. The novelty of this study is to present a new combination approach to determine the effective criteria in flood hazard zoning (Maneh and Samalqan County). In this regard, the combination of geographically weighted regression (Gaussian and tri-cube kernels) and binary particle swarm optimization algorithm was used. The recommended combination method is suitable for spatial regression problems because it is compatible with two unique properties of spatial data, i.e. spatial autocorrelation and spatial non-stationarity. The best value of the fitness function (1-R2) for Gaussian and tri-cube kernels were obtained 0.0745 and 0.0022, respectively, which indicates higher compatibility of the tri-cube kernel than the Gaussian kernel. It was also found that the criteria used have a significant effect on the rate of flooding in the study area.
ISSN:2676-4377
2676-4385
DOI:10.22111/jneh.2021.36392.1724