Tracking rapid and slow ice-dammed lake changes through optical satellites and local knowledge: a case study of Tystigbreen in Norway

The number of glacial lakes has grown globally concurrently with the retreat of glaciers in the last few decades, increasing the risk of potentially hazardous glacial lake outburst floods (GLOFs) and posing a threat to downstream communities. Norway has several known ice-dammed lakes that produce re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of glaciology 2024, Vol.70, Article e71
Hauptverfasser: Abderhalden, Jogscha Miriam, Bly, Kristine Katherine, Lappe, Ronja, Andreassen, Liss Marie, Rogozhina, Irina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The number of glacial lakes has grown globally concurrently with the retreat of glaciers in the last few decades, increasing the risk of potentially hazardous glacial lake outburst floods (GLOFs) and posing a threat to downstream communities. Norway has several known ice-dammed lakes that produce repeated GLOFs but as we show here, the existing GLOF database is incomplete and needs to be improved through continuous monitoring of glaciers and glacial lakes. This study examines the case of an ice cap in central Norway hosting at least four drainage-prone lakes. We reconstruct the sequence of lake drainage events through a combination of remote sensing, ground-truthing and citizen science while scrutinising the applicability of the PlanetScope imagery vs Sentinel-2 and Landsat-8 OLI products. As opposed to the Landsat imagery that often fails to resolve even the largest glacial lakes of Tystigbreen, both PlanetScope and Sentinel-2 are helpful in identifying previously unrecognised glacial lakes and undocumented drainage events. Our analysis suggests that a fusion of the two satellite products may be beneficial for automated tracking of glacial lake changes. We also demonstrate that local knowledge and systematic involvement of citizens in data collection have a potential to enrich GLOF databases.
ISSN:0022-1430
1727-5652
DOI:10.1017/jog.2024.13