Superior dark-state cooling via nonreciprocal couplings in trapped atoms

Cooling the trapped atoms toward their motional ground states is key to applications of quantum simulation and quantum computation. By utilizing nonreciprocal couplings between two atoms, we present an intriguing dark-state cooling scheme in Λ-type three-level structure, which is shown superior than...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:New journal of physics 2022-11, Vol.24 (11), p.113020
Hauptverfasser: Wang, Chun-Che, Wang, Yi-Cheng, Wang, Chung-Hsien, Chen, Chi-Chih, Jen, H H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cooling the trapped atoms toward their motional ground states is key to applications of quantum simulation and quantum computation. By utilizing nonreciprocal couplings between two atoms, we present an intriguing dark-state cooling scheme in Λ-type three-level structure, which is shown superior than the conventional electromagnetically-induced-transparency cooling in a single atom. The effective nonreciprocal couplings can be facilitated either by an atom–waveguide interface or a free-space photonic quantum link. By tailoring system parameters allowed in dark-state cooling, we identify the parameter regions of better cooling performance with an enhanced cooling rate. We further demonstrate a mapping to the dark-state sideband cooling under asymmetric laser driving fields, which shows a distinct heat transfer and promises an outperforming dark-state sideband cooling assisted by collective spin–exchange interactions.
ISSN:1367-2630
1367-2630
DOI:10.1088/1367-2630/ac9ed5