Ultrafast plasmonic photoemission in the single-cycle and few-cycle regimes

Due to the highly increased interest in the development of state-of-the-art applications of photoemission in ultrafast electron microscopy, development of photocathodes and many more applications, a correct theoretical understanding of the underlying phenomena is needed. Within the framework of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2022-03, Vol.12 (1), p.3932-3932, Article 3932
Hauptverfasser: Kiss, G. Zs, Földi, P., Dombi, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Due to the highly increased interest in the development of state-of-the-art applications of photoemission in ultrafast electron microscopy, development of photocathodes and many more applications, a correct theoretical understanding of the underlying phenomena is needed. Within the framework of the single active electron approximation the most accurate results can be obtained by the direct solution of the time-dependent Schrödinger equation (TDSE). In this work, after a brief presentation of a numerically improved version of a mixed 1D-TDSE method, we investigated the characteristics of electron spectra obtained from the surface of metal nanoparticles irradiated with ultrashort laser pulses. During our investigation different decay lengths of the plasmonic-enhanced incident field in the vicinity of the metal were considered. Using the simulated spectra we managed to identify the behavior of the cutoff energy as a function of decay length in the strong-field, multiphoton and transition regimes.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-022-07259-4