The connected size Ramsey number for matchings versus small disconnected graphs

Let F, G,  and H be simple graphs. The notation F → (G, H) means that if all the edges of F are arbitrarily colored by red or blue, then there always exists either a red subgraph G or a blue subgraph H. The size Ramsey number of graph G and H,  denoted by r̂(G, H) is the smallest integer k such that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronic journal of graph theory and applications 2019-01, Vol.7 (1), p.113-119
Hauptverfasser: Assiyatun, Hilda, Rahadjeng, Budi, Baskoro, Edy Tri
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let F, G,  and H be simple graphs. The notation F → (G, H) means that if all the edges of F are arbitrarily colored by red or blue, then there always exists either a red subgraph G or a blue subgraph H. The size Ramsey number of graph G and H,  denoted by r̂(G, H) is the smallest integer k such that there is a graph F with k edges satisfying F → (G, H). In this research, we will study a modified size Ramsey number, namely the connected size Ramsey number. In this case, we only consider connected graphs F satisfying the above properties. This connected size Ramsey number of G and H is denoted by r̂c(G, H). We will derive an upper bound of r̂c(nK2, H), n ≥ 2 where H is 2Pm or 2K1, t,  and find the exact values of r̂c(nK2, H),  for some fixed n.
ISSN:2338-2287
2338-2287
DOI:10.5614/ejgta.2019.7.1.9