Novel jet observables from machine learning
A bstract Previous studies have demonstrated the utility and applicability of machine learning techniques to jet physics. In this paper, we construct new observables for the discrimination of jets from different originating particles exclusively from information identified by the machine. The approa...
Gespeichert in:
Veröffentlicht in: | The journal of high energy physics 2018-03, Vol.2018 (3), p.1-18, Article 86 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A
bstract
Previous studies have demonstrated the utility and applicability of machine learning techniques to jet physics. In this paper, we construct new observables for the discrimination of jets from different originating particles exclusively from information identified by the machine. The approach we propose is to first organize information in the jet by resolved phase space and determine the effective
N
-body phase space at which discrimination power saturates. This then allows for the construction of a discrimination observable from the
N
-body phase space coordinates. A general form of this observable can be expressed with numerous parameters that are chosen so that the observable maximizes the signal vs. background likelihood. Here, we illustrate this technique applied to discrimination of
H
→
b
b
¯
decays from massive
g
→
b
b
¯
splittings. We show that for a simple parametrization, we can construct an observable that has discrimination power comparable to, or better than, widely-used observables motivated from theory considerations. For the case of jets on which modified mass-drop tagger grooming is applied, the observable that the machine learns is essentially the angle of the dominant gluon emission off of the
b
b
¯
pair. |
---|---|
ISSN: | 1029-8479 1029-8479 |
DOI: | 10.1007/JHEP03(2018)086 |