Molecular Dynamics Simulation of Cetyl Phosphate Adsorption in Flotation of Magnesite and Pertinent Chemical Aspects

Magnesite ores are important resources in the production of value-added magnesium materials. Generally, low selectivity of conventional collectors and the requirement of a large amount of depressant has been a motivation for researchers to identify alternate collectors. In this work, the role of pot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Minerals (Basel) 2020-09, Vol.10 (9), p.761
Hauptverfasser: Tang, Yuan, Yao, Jin, Yin, Wanzhong, Kelebek, Sadan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Magnesite ores are important resources in the production of value-added magnesium materials. Generally, low selectivity of conventional collectors and the requirement of a large amount of depressant has been a motivation for researchers to identify alternate collectors. In this work, the role of potassium cetyl phosphate (PCP) as a new collector in magnesite flotation is investigated using molecular dynamics (MD) simulations and chemical equilibria, electrokinetics and wettability. The results indicate that PCP exhibits a strong collecting ability for magnesite particles even with low concentrations. The presence of PCP leads to significant alterations in the electric double layer and contact angle behavior of magnesite, which results in rapid adsorption of PCP on magnesite surface. The results from chemical computations show that the monoanionic forms of PCP are the dominant species in the weakly acidic pH range, where monohydroxy magnesium species and the ion concentration of magnesite in suspension can be controlled by adjusting pH. The adsorption models indicate that the stable adsorption of PCP on magnesite surfaces occurs spontaneously, supporting the potentiality for selective magnesite flotation in its separation from other carbonate minerals.
ISSN:2075-163X
2075-163X
DOI:10.3390/min10090761