Quantum non-demolition readout of an electron spin in silicon

While single-shot detection of silicon spin qubits is now a laboratory routine, the need for quantum error correction in a large-scale quantum computing device demands a quantum non-demolition (QND) implementation. Unlike conventional counterparts, the QND spin readout imposes minimal disturbance to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2020-03, Vol.11 (1), p.1144-1144, Article 1144
Hauptverfasser: Yoneda, J., Takeda, K., Noiri, A., Nakajima, T., Li, S., Kamioka, J., Kodera, T., Tarucha, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:While single-shot detection of silicon spin qubits is now a laboratory routine, the need for quantum error correction in a large-scale quantum computing device demands a quantum non-demolition (QND) implementation. Unlike conventional counterparts, the QND spin readout imposes minimal disturbance to the probed spin polarization and can therefore be repeated to extinguish measurement errors. Here, we show that an electron spin qubit in silicon can be measured in a highly non-demolition manner by probing another electron spin in a neighboring dot Ising-coupled to the qubit spin. The high non-demolition fidelity (99% on average) enables over 20 readout repetitions of a single spin state, yielding an overall average measurement fidelity of up to 95% within 1.2 ms. We further demonstrate that our repetitive QND readout protocol can realize heralded high-fidelity (>99.6%) ground-state preparation. Our QND-based measurement and preparation, mediated by a second qubit of the same kind, will allow for a wide class of quantum information protocols with electron spins in silicon without compromising the architectural homogeneity. Conventional qubit readout methods in silicon spin qubits destroy the quantum state, precluding any further computations based on the outcome. Here, the authors demonstrate quantum non-demolition readout using a second qubit of the same kind, making for a scalable approach.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-020-14818-8