An Integrative Multiomics Framework for Identification of Therapeutic Targets in Pulmonary Fibrosis
Pulmonary fibrosis (PF) is a heterogeneous disease with a poor prognosis. Therefore, identifying additional therapeutic modalities is required to improve outcome. However, the lack of biomarkers of disease progression hampers the preclinical to clinical translational process. Here, this work assesse...
Gespeichert in:
Veröffentlicht in: | Advanced Science 2023-06, Vol.10 (16), p.e2207454-n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Pulmonary fibrosis (PF) is a heterogeneous disease with a poor prognosis. Therefore, identifying additional therapeutic modalities is required to improve outcome. However, the lack of biomarkers of disease progression hampers the preclinical to clinical translational process. Here, this work assesses and identifies progressive alterations in pulmonary function, transcriptomics, and metabolomics in the mouse lung at 7, 14, 21, and 28 days after a single dose of oropharyngeal bleomycin. By integrating multi‐omics data, this work identifies two central gene subnetworks associated with multiple critical pathological changes in transcriptomics and metabolomics as well as pulmonary function. This work presents a multi‐omics‐based framework to establish a translational link between the bleomycin‐induced PF model in mice and human idiopathic pulmonary fibrosis to identify druggable targets and test therapeutic candidates. This work also indicates peripheral cannabinoid receptor 1 (CB1R) antagonism as a rational therapeutic target for clinical translation in PF. Mouse Lung Fibrosis Atlas can be accessed freely at https://niaaa.nih.gov/mouselungfibrosisatlas.
Multi‐omics approach helps to establish a translational link in idiopathic pulmonary fibrosis (IPF) between human and its experimental model in mice. Multi‐omics‐based framework assists the identification of druggable targets in IPF. Systems pharmacology endorses cannabinoid CB1R antagonism as a rational therapeutic strategy in IPF. |
---|---|
ISSN: | 2198-3844 2198-3844 |
DOI: | 10.1002/advs.202207454 |