Deep learning enables structured illumination microscopy with low light levels and enhanced speed

Structured illumination microscopy (SIM) surpasses the optical diffraction limit and offers a two-fold enhancement in resolution over diffraction limited microscopy. However, it requires both intense illumination and multiple acquisitions to produce a single high-resolution image. Using deep learnin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2020-04, Vol.11 (1), p.1934-1934, Article 1934
Hauptverfasser: Jin, Luhong, Liu, Bei, Zhao, Fenqiang, Hahn, Stephen, Dong, Bowei, Song, Ruiyan, Elston, Timothy C., Xu, Yingke, Hahn, Klaus M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Structured illumination microscopy (SIM) surpasses the optical diffraction limit and offers a two-fold enhancement in resolution over diffraction limited microscopy. However, it requires both intense illumination and multiple acquisitions to produce a single high-resolution image. Using deep learning to augment SIM, we obtain a five-fold reduction in the number of raw images required for super-resolution SIM, and generate images under extreme low light conditions (at least 100× fewer photons). We validate the performance of deep neural networks on different cellular structures and achieve multi-color, live-cell super-resolution imaging with greatly reduced photobleaching. Super-resolution microscopy typically requires high laser powers which can induce photobleaching and degrade image quality. Here the authors augment structured illumination microscopy (SIM) with deep learning to reduce the number of raw images required and boost its performance under low light conditions.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-020-15784-x