Steady-state thermodynamic process in multilayered heterogeneous cylinder
The present study formulates and further examines a steady-state heat diffusion process in a generalized multilayered heterogeneous circular composite. Sufficient boundary and interfacial data are assumed at the endpoints of the circumferential length, and the interfaces, cutting across the respecti...
Gespeichert in:
Veröffentlicht in: | Open Physics 2024-07, Vol.22 (1), p.2196-12 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The present study formulates and further examines a steady-state heat diffusion process in a generalized multilayered heterogeneous circular composite. Sufficient boundary and interfacial data are assumed at the endpoints of the circumferential length, and the interfaces, cutting across the respective perfectly welded cylinders. A well-known classical method for solving linear partial differential equations has been sought to derive a compacted solution for the diffusion process in governing heterogeneous cylinders. Certainly, among the significant novel findings of the current study is the acquisition of a generalized series solution for
-body multilayered heterogeneous circular composites, in addition to the portrayal of simple, yet an efficient method for solution; away from sophisticated numerical methods or integral transform methods that are not always invertible analytically. Moreover, three prototype situations of the structure have been profoundly examined, which are then found to satisfy all imposed structural assumptions. Moreover, the current examination finds relevance in the study and the analysis and design of multilayered bodies in engineering, material science, thermodynamics, and solid mechanics. |
---|---|
ISSN: | 2391-5471 2391-5471 |
DOI: | 10.1515/phys-2024-0067 |