Cognitive Systems for the Energy Efficiency Industry

This review underscores the pivotal role of Cognitive Systems (CS) in enhancing energy efficiency within the industrial sector, exploring the application of sophisticated algorithms, data analytics, and machine learning techniques to the real-time optimization of energy consumption. This methodology...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2024-04, Vol.17 (8), p.1860
Hauptverfasser: Arevalo, Javier, Latorre-Biel, Juan-Ignacio, Flor-Montalvo, Francisco-Javier, Perez-Parte, Mercedes, Blanco, Julio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This review underscores the pivotal role of Cognitive Systems (CS) in enhancing energy efficiency within the industrial sector, exploring the application of sophisticated algorithms, data analytics, and machine learning techniques to the real-time optimization of energy consumption. This methodology has the potential to reduce operational expenses and further diminish environmental repercussions; however, it also leverages data-driven insights and predictive maintenance to foresee equipment malfunctions and modulate energy utilization accordingly. The viability of integrating renewable energy sources is emphasized, supporting a transition towards sustainability. Furthermore, this research includes a bibliometric literature analysis from the past decade on the deployment of CS and Artificial Intelligence in enhancing industrial energy efficiency.
ISSN:1996-1073
1996-1073
DOI:10.3390/en17081860