Cross-Verification of Independent Quantum Devices

Quantum computers are on the brink of surpassing the capabilities of even the most powerful classical computers, which naturally raises the question of how one can trust the results of a quantum computer when they cannot be compared to classical simulation Here, we present a cross-verification techn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. X 2021-09, Vol.11 (3), p.031049, Article 031049
Hauptverfasser: Greganti, C., Demarie, T. F., Ringbauer, M., Jones, J. A., Saggio, V., Calafell, I. Alonso, Rozema, L. A., Erhard, A., Meth, M., Postler, L., Stricker, R., Schindler, P., Blatt, R., Monz, T., Walther, P., Fitzsimons, J. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Quantum computers are on the brink of surpassing the capabilities of even the most powerful classical computers, which naturally raises the question of how one can trust the results of a quantum computer when they cannot be compared to classical simulation Here, we present a cross-verification technique that exploits the principles of measurement-based quantum computation to link quantum circuits of different input size, depth, and structure. Our technique enables consistency checks of quantum computations between independent devices, as well as within a single device. We showcase our protocol by applying it to five state-of-the-art quantum processors, based on four distinct physical architectures: nuclear magnetic resonance, superconducting circuits, trapped ions, and photonics, with up to six qubits and up to 200 distinct circuits.
ISSN:2160-3308
2160-3308
DOI:10.1103/PhysRevX.11.031049