Circulation characteristics of horseshoe vortex in scour region around circular piers
This paper presents an experimental investigation of the circulation of the horseshoe vortex system within the equilibrium scour hole at a circular pier, with the data measured by an acoustic Doppler velocimeter (ADV). Velocity vector plots and vorticity contours of the flow field on the upstream pl...
Gespeichert in:
Veröffentlicht in: | Water Science and Engineering 2013, Vol.6 (1), p.59-77 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents an experimental investigation of the circulation of the horseshoe vortex system within the equilibrium scour hole at a circular pier, with the data measured by an acoustic Doppler velocimeter (ADV). Velocity vector plots and vorticity contours of the flow field on the upstream plane of symmetry (y = 0 cm) and on the planes :e3 cm away from the plane of symmetry Cv = ~3 cm) are presented. The vorticity and circulation of the horseshoe vortices were determined using the forward difference technique and Stokes theorem, respectively. The results show that the magnitudes of circulations are similar on the planes y = 3 cm and y = -3 cm, which are less than those on the plane y = 0 cm. The circulation decreases with the increase of flow shallowness, and increases with the densimetric Froude number. It also increases with the pier Reynolds number at a constant densimetric Froude number, or at a constant flow shallowness. The relative vortex strength (dimensionless circulation) decreases with the increase of the pier Reynolds number. Some empirical equations are proposed based on the results. The predicted circulation values with these equations match the measured data, which indicates that these equations can be used to estimate the circulation in future studies. |
---|---|
ISSN: | 1674-2370 |
DOI: | 10.3882/j.issn.1674-2370.2013.01.005 |