Pengembangan Perangkat Lunak Prediktor Nilai Mahasiswa Menggunakan Metode Spectral Clustering dan Bagging Regresi Linier
Prediksi nilai ujian akhir dapat membantu pendidik atau mahasiswa dalam melakukan tindakan ke depan yang sesuai dengan kondisi pada saat itu. Salah satu metode yang dapat digunakan dalam memprediksi nilai adalah dengan Regresi Linier. Tetapi, persamaan regresi terkadang dipengaruhi oleh keragaman pe...
Gespeichert in:
Veröffentlicht in: | Jurnal Teknik ITS 2012-09, Vol.1 (1) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | ind |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Prediksi nilai ujian akhir dapat membantu pendidik atau mahasiswa dalam melakukan tindakan ke depan yang sesuai dengan kondisi pada saat itu. Salah satu metode yang dapat digunakan dalam memprediksi nilai adalah dengan Regresi Linier. Tetapi, persamaan regresi terkadang dipengaruhi oleh keragaman persebaran data, sehingga keakuratan persamaan prediksi yang dihasilkan kurang baik. Oleh karena itu, ada studi lain yang mengusulkan model Bootstrap Aggregating Regresi Linear yaitu metode regresi linier yang didahului dengan mengelompokkan data. Dalam pengelompokan data digunakan Spectral Clustering. Dengan adanya pengelompokan tersebut, maka diharapkan distribusi data dalam membentuk persamaan regresi dapat lebih seragam. Selanjutnya, setiap kelompok data akan menghasilkan suatu persamaan regresi. Hasil prediksi merupakan rata-rata dari hasil persamaan regresi dari masing-masing kelompok data. Dalam studi ini, dikembangkan sebuah perangkat lunak prediktor nilai mahasiswa menggunakan model yang diusulkan oleh studi lain yang telah disebutkan sebelumnya. Berdasar pada uji coba yang dilakukan, perangkat lunakn yang dikembangkan dengan menggunakan Spectral Clustering dan Bootstrap Aggregating Regresi Linier mampu memprediksi nilai akhir mahasiswa dengan parameter jumlah cluster yang tepat. Hal ini dapat disimpulkan berdasarkan nilai kesalahan dengan Root Mean Square Error dari hasil prediksi sekitar 0.05 – 0.08 dari dataset |
---|---|
ISSN: | 2301-9271 2337-3539 |