Investigating the orientation dependence of local fields around spherical defects using crystal plasticity simulations
The presence of a void or secondary particle plays a crucial role in both the mechanical response and damage evolution of metals. This work presents local stress and strain field predictions in a single crystalline matrix that contains a spherical void or hard particle using crystal plasticity finit...
Gespeichert in:
Veröffentlicht in: | Journal of materials research and technology 2024-11, Vol.33 (1), p.235-243 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The presence of a void or secondary particle plays a crucial role in both the mechanical response and damage evolution of metals. This work presents local stress and strain field predictions in a single crystalline matrix that contains a spherical void or hard particle using crystal plasticity finite element method (CP-FEM) simulations. Simulations demonstrate highly heterogeneous orientation dependent local fields near defects. In particular, we show that matrix decohesion around hard particles will occur first before void growth in pre-existing voids under strain-controlled uniaxial tension and isochoric loading. Furthermore, CP-FEM simulations predict that the [1̄11]-oriented grain is most susceptible for failure, while grains oriented toward the [001] orientation are more resistant to failure. This work provides insights into how grain-scale microstructure with volumetric defects influence the local damage and failure behavior in metal alloys.
[Display omitted] |
---|---|
ISSN: | 2238-7854 |
DOI: | 10.1016/j.jmrt.2024.09.029 |