Longitudinal deep neural networks for assessing metastatic brain cancer on a large open benchmark

The detection and tracking of metastatic cancer over the lifetime of a patient remains a major challenge in clinical trials and real-world care. Advances in deep learning combined with massive datasets may enable the development of tools that can address this challenge. We present NYUMets-Brain, the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2024-09, Vol.15 (1), p.8170-10, Article 8170
Hauptverfasser: Link, Katherine E., Schnurman, Zane, Liu, Chris, Kwon, Young Joon (Fred), Jiang, Lavender Yao, Nasir-Moin, Mustafa, Neifert, Sean, Alzate, Juan Diego, Bernstein, Kenneth, Qu, Tanxia, Chen, Viola, Yang, Eunice, Golfinos, John G., Orringer, Daniel, Kondziolka, Douglas, Oermann, Eric Karl
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The detection and tracking of metastatic cancer over the lifetime of a patient remains a major challenge in clinical trials and real-world care. Advances in deep learning combined with massive datasets may enable the development of tools that can address this challenge. We present NYUMets-Brain, the world’s largest, longitudinal, real-world dataset of cancer consisting of the imaging, clinical follow-up, and medical management of 1,429 patients. Using this dataset we developed Segmentation-Through-Time, a deep neural network which explicitly utilizes the longitudinal structure of the data and obtained state-of-the-art results at small (
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-024-52414-2