Dynamics of localized waves and interaction solutions for the (3+1)-dimensional B-type Kadomtsev–Petviashvili–Boussinesq equation

In this work, we investigate the ( 3 + 1 ) -dimensional B-type Kadomtsev–Petviashvili–Boussinesq equation, which can be used to describe the processes of interaction of exponentially localized structures. The breathers, lumps, and rogue waves of this equation are studied in detail via the Hirota bil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in difference equations 2020-02, Vol.2020 (1), p.1-12, Article 93
Hauptverfasser: Liu, Wenhao, Zhang, Yufeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, we investigate the ( 3 + 1 ) -dimensional B-type Kadomtsev–Petviashvili–Boussinesq equation, which can be used to describe the processes of interaction of exponentially localized structures. The breathers, lumps, and rogue waves of this equation are studied in detail via the Hirota bilinear method. More specifically, the general breathers, line breathers, and many kinds of interaction solutions are constructed by selecting the appropriate parameters. Based on the long wave limit method, some lumps, rogue waves, and their interaction solutions are derived. The dynamical characteristics of these solutions are vividly demonstrated through some graphical analyzes in the different planes.
ISSN:1687-1847
1687-1839
1687-1847
DOI:10.1186/s13662-020-2493-6