Cellular and molecular landscape of mammalian sinoatrial node revealed by single-cell RNA sequencing

Bioelectrical impulses intrinsically generated within the sinoatrial node (SAN) trigger the contraction of the heart in mammals. Though discovered over a century ago, the molecular and cellular features of the SAN that underpin its critical function in the heart are uncharted territory. Here, we ide...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2021-01, Vol.12 (1), p.287-287, Article 287
Hauptverfasser: Liang, Dandan, Xue, Jinfeng, Geng, Li, Zhou, Liping, Lv, Bo, Zeng, Qiao, Xiong, Ke, Zhou, Huixing, Xie, Duanyang, Zhang, Fulei, Liu, Jie, Liu, Yi, Li, Li, Yang, Jian, Xue, Zhigang, Chen, Yi-Han
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bioelectrical impulses intrinsically generated within the sinoatrial node (SAN) trigger the contraction of the heart in mammals. Though discovered over a century ago, the molecular and cellular features of the SAN that underpin its critical function in the heart are uncharted territory. Here, we identify four distinct transcriptional clusters by single-cell RNA sequencing in the mouse SAN. Functional analysis of differentially expressed genes identifies a core cell cluster enriched in the electrogenic genes. The similar cellular features are also observed in the SAN from both rabbit and cynomolgus monkey. Notably, Vsnl1 , a core cell cluster marker in mouse, is abundantly expressed in SAN, but is barely detectable in atrium or ventricle, suggesting that Vsnl1 is a potential SAN marker. Importantly, deficiency of Vsnl1 not only reduces the beating rate of human induced pluripotent stem cell - derived cardiomyocytes (hiPSC-CMs) but also the heart rate of mice. Furthermore, weighted gene co-expression network analysis (WGCNA) unveiled the core gene regulation network governing the function of the SAN in mice. Overall, these findings reveal the whole transcriptome profiling of the SAN at single-cell resolution, representing an advance toward understanding of both the biology and the pathology of SAN. The spontaneous bioelectrical activity of pacemaker cells in sinoatrial node (SAN) triggers the heartbeats. Here, the authors perform single-cell RNA sequencing in the mouse SAN and identify molecular and cellular features of the SAN conserved in rabbit and cynomolgus monkey, identifying a new potential SAN marker.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-020-20448-x