SUMOylation inhibitors synergize with FXR agonists in combating liver fibrosis

Farnesoid X receptor (FXR) is a promising target for nonalcoholic steatohepatitis (NASH) and fibrosis. Although various FXR agonists have shown anti-fibrotic effects in diverse preclinical animal models, the response rate and efficacies in clinical trials were not optimum. Here we report that prophy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2020-01, Vol.11 (1), p.240-16, Article 240
Hauptverfasser: Zhou, Jiyu, Cui, Shuang, He, Qingxian, Guo, Yitong, Pan, Xiaojie, Zhang, Pengfei, Huang, Ningning, Ge, Chaoliang, Wang, Guangji, Gonzalez, Frank J., Wang, Hong, Hao, Haiping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Farnesoid X receptor (FXR) is a promising target for nonalcoholic steatohepatitis (NASH) and fibrosis. Although various FXR agonists have shown anti-fibrotic effects in diverse preclinical animal models, the response rate and efficacies in clinical trials were not optimum. Here we report that prophylactic but not therapeutic administration of obeticholic acid (OCA) prevents hepatic stellate cell (HSC) activation and fibrogenesis. Activated HSCs show limited response to OCA and other FXR agonists due to enhanced FXR SUMOylation. SUMOylation inhibitors rescue FXR signaling and thereby increasing the efficacy of OCA against HSC activation and fibrosis. FXR upregulates Perilipin-1 , a direct target gene of FXR, to stabilize lipid droplets and thereby prevent HSC activation. Therapeutic coadministration of OCA and SUMOylation inhibitors drastically impedes liver fibrosis induced by CCl 4 , bile duct ligation, and more importantly NASH. In conclusion, we propose a promising therapeutic approach by combining SUMOylation inhibitors and FXR agonists for liver fibrosis. FXR agonists have been investigated for the treatment of non-alcoholic steatohepatitis and liver fibrosis but the clinical efficacy is not optimal. Here the authors show that enhanced FXR SUMOylation in activated hepatic stellate cells reduces FXR signaling and that this can be rescued by SUMOylation inhibitors.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-019-14138-6