Attosecond optoelectronic field measurement in solids

The sub-cycle interaction of light and matter is one of the key frontiers of inquiry made accessible by attosecond science. Here, we show that when light excites a pair of charge carriers inside of a solid, the transition probability is strongly localized to instants slightly after the extrema of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2020-01, Vol.11 (1), p.430-430, Article 430
Hauptverfasser: Sederberg, Shawn, Zimin, Dmitry, Keiber, Sabine, Siegrist, Florian, Wismer, Michael S., Yakovlev, Vladislav S., Floss, Isabella, Lemell, Christoph, Burgdörfer, Joachim, Schultze, Martin, Krausz, Ferenc, Karpowicz, Nicholas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The sub-cycle interaction of light and matter is one of the key frontiers of inquiry made accessible by attosecond science. Here, we show that when light excites a pair of charge carriers inside of a solid, the transition probability is strongly localized to instants slightly after the extrema of the electric field. The extreme temporal localization is utilized in a simple electronic circuit to record the waveforms of infrared to ultraviolet light fields. This form of petahertz-bandwidth field metrology gives access to both the modulated transition probability and its temporal offset from the laser field, providing sub-fs temporal precision in reconstructing the sub-cycle electronic response of a solid state structure. Characterization of light pulses is important in order to understand their interaction with matter. Here the authors demonstrate a nonlinear photoconductive sampling method to measure electric field wave-forms in the infrared, visible and ultraviolet spectral ranges.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-019-14268-x