Identification of plasmon-driven nanoparticle-coalescence-dominated growth of gold nanoplates through nanopore sensing
The fascinating phenomenon that plasmon excitation can convert isotropic silver nanospheres to anisotropic nanoprisms has already been developed into a general synthetic technique since the discovery in 2001. However, the mechanism governing the morphology conversion is described with different reac...
Gespeichert in:
Veröffentlicht in: | Nature communications 2022-03, Vol.13 (1), p.1402-1402, Article 1402 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The fascinating phenomenon that plasmon excitation can convert isotropic silver nanospheres to anisotropic nanoprisms has already been developed into a general synthetic technique since the discovery in 2001. However, the mechanism governing the morphology conversion is described with different reaction processes. So far, the mechanism based on redox reactions dominated anisotropic growth by plasmon-produced hot carriers is widely accepted and developed. Here, we successfully achieved plasmon-driven high yield conversion of gold nanospheres into nanoplates with iodine as the inducer. To investigate the mechanism, nanopore sensing technology is established to statistically study the intermediate species at the single-nanoparticle level. Surprisingly, the morphology conversion is proved as a hot hole-controlled coalescence-dominated growth process. This work conclusively elucidates that a controllable plasmon-driven nanoparticle-coalescence mechanism could enable the production of well-defined anisotropic metal nanostructures and suggests that the nanopore sensing could be of general use for studying the growth process of nanomaterials.
This study shows the light-driven morphology conversion from gold nanospheres to gold nanoplates through an aggregation-coalescence-dominated growth pathway, demonstrated by the nanopore sensing technique. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-022-29123-9 |