From “Dark Matter” to “Star”: Insight Into the Regulation Mechanisms of Plant Functional Long Non-Coding RNAs
Long non-coding RNAs (lncRNAs) play a vital role in a variety of biological functions in plant growth and development. In this study, we provided an overview of the molecular mechanisms of lncRNAs in interacting with other biomolecules with an emphasis on those lncRNAs validated only by low-throughp...
Gespeichert in:
Veröffentlicht in: | Frontiers in plant science 2021-06, Vol.12, p.650926-650926 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Long non-coding RNAs (lncRNAs) play a vital role in a variety of biological functions in plant growth and development. In this study, we provided an overview of the molecular mechanisms of lncRNAs in interacting with other biomolecules with an emphasis on those lncRNAs validated only by low-throughput experiments. LncRNAs function through playing multiple roles, including sponger for sequestering RNA or DNA, guider or decoy for recruiting or hijacking transcription factors or peptides, and scaffold for binding with chromatin modification complexes, as well as precursor of microRNAs or small interfering RNAs. These regulatory roles have been validated in several plant species with a comprehensive list of 73 lncRNA–molecule interaction pairs in 16 plant species found so far, suggesting their commonality in the plant kingdom. Such initial findings of a small number of functional plant lncRNAs represent the beginning of what is to come as lncRNAs with unknown functions were found in orders of magnitude more than proteins. |
---|---|
ISSN: | 1664-462X 1664-462X |
DOI: | 10.3389/fpls.2021.650926 |