Classification of caries in third molars on panoramic radiographs using deep learning

The objective of this study is to assess the classification accuracy of dental caries on panoramic radiographs using deep-learning algorithms. A convolutional neural network (CNN) was trained on a reference data set consisted of 400 cropped panoramic images in the classification of carious lesions i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2021-06, Vol.11 (1), p.12609-12609, Article 12609
Hauptverfasser: Vinayahalingam, Shankeeth, Kempers, Steven, Limon, Lorenzo, Deibel, Dionne, Maal, Thomas, Hanisch, Marcel, Bergé, Stefaan, Xi, Tong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The objective of this study is to assess the classification accuracy of dental caries on panoramic radiographs using deep-learning algorithms. A convolutional neural network (CNN) was trained on a reference data set consisted of 400 cropped panoramic images in the classification of carious lesions in mandibular and maxillary third molars, based on the CNN MobileNet V2. For this pilot study, the trained MobileNet V2 was applied on a test set consisting of 100 cropped PR(s). The classification accuracy and the area-under-the-curve (AUC) were calculated. The proposed method achieved an accuracy of 0.87, a sensitivity of 0.86, a specificity of 0.88 and an AUC of 0.90 for the classification of carious lesions of third molars on PR(s). A high accuracy was achieved in caries classification in third molars based on the MobileNet V2 algorithm as presented. This is beneficial for the further development of a deep-learning based automated third molar removal assessment in future.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-021-92121-2