Reversible structural evolution of sodium-rich rhombohedral Prussian blue for sodium-ion batteries
Iron-based Prussian blue analogs are promising low-cost and easily prepared cathode materials for sodium-ion batteries. Their materials quality and electrochemical performance are heavily reliant on the precipitation process. Here we report a controllable precipitation method to synthesize high-perf...
Gespeichert in:
Veröffentlicht in: | Nature communications 2020-02, Vol.11 (1), p.980-980, Article 980 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Iron-based Prussian blue analogs are promising low-cost and easily prepared cathode materials for sodium-ion batteries. Their materials quality and electrochemical performance are heavily reliant on the precipitation process. Here we report a controllable precipitation method to synthesize high-performance Prussian blue for sodium-ion storage. Characterization of the nucleation and evolution processes of the highly crystalline Prussian blue microcubes reveals a rhombohedral structure that exhibits high initial Coulombic efficiency, excellent rate performance, and cycling properties. The phase transitions in the as-obtained material are investigated by synchrotron in situ powder X-ray diffraction, which shows highly reversible structural transformations between rhombohedral, cubic, and tetragonal structures upon sodium-ion (de)intercalations. Moreover, the Prussian blue material from a large-scale synthesis process shows stable cycling performance in a pouch full cell over 1000 times. We believe that this work could pave the way for the real application of Prussian blue materials in sodium-ion batteries.
Here the authors deploy a scalable synthesis route to prepare sodium-rich Na
2−
x
FeFe(CN)
6
cathode materials for sodium-ion battery. The highly reversible structural evolution during cycling between rhombohedral, cubic and tetragonal phases is the key to enable the good performance. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-020-14444-4 |