A Shortest Distance Priority UAV Path Planning Algorithm for Precision Agriculture
Unmanned aerial vehicles (UAVs) have made significant advances in autonomous sensing, particularly in the field of precision agriculture. Effective path planning is critical for autonomous navigation in large orchards to ensure that UAVs are able to recognize the optimal route between the start and...
Gespeichert in:
Veröffentlicht in: | Sensors (Basel, Switzerland) Switzerland), 2024-11, Vol.24 (23), p.7514 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Unmanned aerial vehicles (UAVs) have made significant advances in autonomous sensing, particularly in the field of precision agriculture. Effective path planning is critical for autonomous navigation in large orchards to ensure that UAVs are able to recognize the optimal route between the start and end points. When UAVs perform tasks such as crop protection, monitoring, and data collection in orchard environments, they must be able to adapt to dynamic conditions. To address these challenges, this study proposes an enhanced Q-learning algorithm designed to optimize UAV path planning by combining static and dynamic obstacle avoidance features. A shortest distance priority (SDP) strategy is integrated into the learning process to minimize the distance the UAV must travel to reach the target. In addition, the root mean square propagation (RMSP) method is used to dynamically adjust the learning rate according to gradient changes, which accelerates the learning process and improves path planning efficiency. In this study, firstly, the proposed method was compared with state-of-the-art path planning techniques (including A-star, Dijkstra, and traditional Q-learning) in terms of learning time and path length through a grid-based 2D simulation environment. The results showed that the proposed method significantly improved performance compared to existing methods. In addition, 3D simulation experiments were conducted in the AirSim virtual environment. Due to the complexity of the 3D state, a deep neural network was used to calculate the Q-value based on the proposed algorithm. The results indicate that the proposed method can achieve the shortest path planning and obstacle avoidance operations in an orchard 3D simulation environment. Therefore, drones equipped with this algorithm are expected to make outstanding contributions to the development of precision agriculture through intelligent navigation and obstacle avoidance. |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s24237514 |