ECCPoW: Error-Correction Code based Proof-of-Work for ASIC Resistance
Bitcoin is the first cryptocurrency to participate in a network and receive compensation for online remittance and mining without any intervention from a third party, such as financial institutions. Bitcoin mining is done through proof of work (PoW). Given its characteristics, the higher hash rate r...
Gespeichert in:
Veröffentlicht in: | Symmetry (Basel) 2020-06, Vol.12 (6), p.988 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Bitcoin is the first cryptocurrency to participate in a network and receive compensation for online remittance and mining without any intervention from a third party, such as financial institutions. Bitcoin mining is done through proof of work (PoW). Given its characteristics, the higher hash rate results in a higher probability of mining, leading to the emergence of a mining pool, called a mining organization. Unlike central processing units or graphics processing units, high-cost application-specific integrated circuit miners have emerged with performance efficiency. The problem is that the obtained hash rate exposes Bitcoin’s mining monopoly and causes the risk of a double-payment attack. To solve this problem, we propose the error-correction code PoW (ECCPoW), combining the low-density parity-check decoder and hash function. The ECCPoW contributes to the phenomenon of symmetry in the proof of work (PoW) blockchain. This paper proposes the implementation of ECCPoW, replacing the PoW in Bitcoin. Finally, we compare the mining centralization, security, and scalability of ECCPoW and Bitcoin. |
---|---|
ISSN: | 2073-8994 2073-8994 |
DOI: | 10.3390/sym12060988 |