Detection Method of Infected Wood on Digital Orthophoto Map–Digital Surface Model Fusion Network

Pine wilt disease (PWD) is a worldwide affliction that poses a significant menace to forest ecosystems. The swift and precise identification of pine trees under infection holds paramount significance in the proficient administration of this ailment. The progression of remote sensing and deep learnin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2023-08, Vol.15 (17), p.4295
Hauptverfasser: Wang, Guangbiao, Zhao, Hongbo, Chang, Qing, Lyu, Shuchang, Liu, Binghao, Wang, Chunlei, Feng, Wenquan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pine wilt disease (PWD) is a worldwide affliction that poses a significant menace to forest ecosystems. The swift and precise identification of pine trees under infection holds paramount significance in the proficient administration of this ailment. The progression of remote sensing and deep learning methodologies has propelled the utilization of target detection and recognition techniques reliant on remote sensing imagery, emerging as the prevailing strategy for pinpointing affected trees. Although the existing object detection algorithms have achieved remarkable success, virtually all methods solely rely on a Digital Orthophoto Map (DOM), which is not suitable for diseased trees detection, leading to a large false detection rate in the detection of easily confused targets, such as bare land, houses, brown herbs and so on. In order to improve the ability of detecting diseased trees and preventing the spread of the epidemic, we construct a large-scale PWD detection dataset with both DOM and Digital Surface Model (DSM) images and propose a novel detection framework, DDNet, which makes full use of the spectral features and geomorphological spatial features of remote sensing targets. The experimental results show that the proposed joint network achieves an AP50 2.4% higher than the traditional deep learning network.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs15174295