Design and Kinematic Analysis of Cable-Driven Target Spray Robot for Citrus Orchards
In Southeast Asia, many varieties of citrus are grown in hilly areas. Compared with plain orchards, it is difficult for large spraying equipment to move in hilly orchards. Small spraying equipment can enter hilly orchards, but their spraying power cannot make droplets penetrate into the canopy, resu...
Gespeichert in:
Veröffentlicht in: | Applied sciences 2022-09, Vol.12 (18), p.9379 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In Southeast Asia, many varieties of citrus are grown in hilly areas. Compared with plain orchards, it is difficult for large spraying equipment to move in hilly orchards. Small spraying equipment can enter hilly orchards, but their spraying power cannot make droplets penetrate into the canopy, resulting in low deposition rates within the canopy. As a kind of unstructured narrow space, the branches within the canopy are interlaced, thus a flexible manipulator that can move within the canopy is required. In this paper, a novel remote-controlled, cable-driven target spray robot (CDTSR) was designed to achieve a precise spray within the canopy. It consisted of a small tracked vehicle, a cable-driven flexible manipulator (CDFM), and a spray system. The CDFM had six degrees of freedom driven by a cable tendon. The forward and inverse kinematics model of the CDFM were established and then the semispherical workspace was calculated. Furthermore, while considering precise control requirements, the dynamics equations were derived. The experimental results demonstrated that the CFDM could move dexterously within the canopy with interlacing branches to reach pests and diseases areas in the canopy. The entire operation took 3.5 s. This study solved the problem of a low spray deposition rate within a canopy and has potential applications in agricultural plant protection. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app12189379 |