MAMGD: Gradient-Based Optimization Method Using Exponential Decay

Optimization methods, namely, gradient optimization methods, are a key part of neural network training. In this paper, we propose a new gradient optimization method using exponential decay and the adaptive learning rate using a discrete second-order derivative of gradients. The MAMGD optimizer uses...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Technologies (Basel) 2024-09, Vol.12 (9), p.154
Hauptverfasser: Sakovich, Nikita, Aksenov, Dmitry, Pleshakova, Ekaterina, Gataullin, Sergey
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Optimization methods, namely, gradient optimization methods, are a key part of neural network training. In this paper, we propose a new gradient optimization method using exponential decay and the adaptive learning rate using a discrete second-order derivative of gradients. The MAMGD optimizer uses an adaptive learning step, exponential smoothing and gradient accumulation, parameter correction, and some discrete analogies from classical mechanics. The experiments included minimization of multivariate real functions, function approximation using multilayer neural networks, and training neural networks on popular classification and regression datasets. The experimental results of the new optimization technology showed a high convergence speed, stability to fluctuations, and an accumulation of gradient accumulators. The research methodology is based on the quantitative performance analysis of the algorithm by conducting computational experiments on various optimization problems and comparing it with existing methods.
ISSN:2227-7080
2227-7080
DOI:10.3390/technologies12090154