Genomic and transcriptomic insights into molecular basis of sexually dimorphic nuptial spines in Leptobrachium leishanense
Sexually dimorphic (SD) traits are important in sexual selection and species survival, yet the molecular basis remains elusive, especially in amphibians where SD traits have evolved repeatedly. We focus on the Leishan moustache toad ( Leptobrachium leishanense ), in which males develop nuptial spine...
Gespeichert in:
Veröffentlicht in: | Nature communications 2019-12, Vol.10 (1), p.5551-13, Article 5551 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Sexually dimorphic (SD) traits are important in sexual selection and species survival, yet the molecular basis remains elusive, especially in amphibians where SD traits have evolved repeatedly. We focus on the Leishan moustache toad (
Leptobrachium leishanense
), in which males develop nuptial spines on their maxillary skin. Here we report a 3.5 Gb genome assembly with a contig N50 of 1.93 Mb. We find a specific expansion of the intermediate filament gene family including numerous keratin genes. Within these genes, a cluster of duplicated hair keratin genes exhibits male-biased and maxillary skin-specific expression, suggesting a role in developing nuptial spines. We identify a module of coexpressed genes significantly associated with spine formation. In addition, we find several hormones likely to be involved in regulating spine development. This study not only presents a high-quality anuran genome but also provides a reference for studying skin-derived SD traits in amphibians.
The basis of sexual dimorphism in non-model species may be elusive, in part due to a lack of genomic and molecular resources. Here, Li et al. report a high-quality anuran genome and reveal candidate genes and pathways associated with shaping sexually dimorphic nuptial spines in a moustache toad. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-019-13531-5 |