On weak and strong convergence theorems for a finite family of nonself I-asymptotically nonexpansive mappings

We prove the weak and strong convergence of S iterative scheme to a common fixed point of a family of nonself asymptotically I-nonexpansive mappings {Ti}Ni i and a family of nonself asymptotically nonexpansive mappings {Ii}Ni i defined on a nonempty closed convex subset of a Banach space. Our scheme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematica Moravica 2015, Vol.19 (2), p.49-64
Hauptverfasser: Gündüz, Birol, Akbulut, Sezgin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove the weak and strong convergence of S iterative scheme to a common fixed point of a family of nonself asymptotically I-nonexpansive mappings {Ti}Ni i and a family of nonself asymptotically nonexpansive mappings {Ii}Ni i defined on a nonempty closed convex subset of a Banach space. Our scheme converges faster than Mann and Ishikawa iteration for contractions. Our weak convergence theorem is proved under more general setup of space as different from weak convergence theorems proved in previously.
ISSN:1450-5932
2560-5542
DOI:10.5937/MatMor1502049G