Liver and Plasma Fatty Acid Characterization in Cultured Brown Trout at Distinct Reproductive Stages

Fatty acids are energy sources, and their profiles are used as biomarkers of metabolic status and physiological changes in fish. Within this context, the main aim of this study was to identify the fatty acids that best discriminate the reproductive status of male and female farmed brown trout. The f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biology (Basel, Switzerland) Switzerland), 2023-11, Vol.12 (11), p.1434
Hauptverfasser: Madureira, Tânia Vieira, Santos, Diana, Simões, Tiago, Lemos, Marco F. L, Rocha, Eduardo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fatty acids are energy sources, and their profiles are used as biomarkers of metabolic status and physiological changes in fish. Within this context, the main aim of this study was to identify the fatty acids that best discriminate the reproductive status of male and female farmed brown trout. The fatty acid composition in liver and plasma samples from the adults of both sexes was monitored along four distinct reproductive stages, namely the spawning capable (December), regressing (March), regenerating (July), and developing (November) stages. Irrespective of the sex and stage, the most representative fatty acids were palmitic acid (16:0), stearic acid (18:0), oleic acid (18:1 n-9), arachidonic acid (20:4 n-6), eicosapentaenoic acid (EPA, 20:5 n-3), and docosahexaenoic acid (DHA, 22:6 n-3). There were no significant sex differences in fatty acid classes in the liver and plasma. Despite this, there were several changes in individual fatty acid levels between the sexes. In the liver, both males and females showed high monounsaturated fatty acid and low polyunsaturated fatty acid (PUFA) levels during the regressing and regenerating stages. At spawning capable and developing stages, a reverse profile was noted. The plasma profiles were mainly influenced by changes in saturated fatty acids and PUFAs in males and by PUFA in females. Based on the most representative fatty acids, four patterns were established for female plasma samples, one for each reproductive stage. This scenario suggests that female plasma samples are promising for the discrimination of gonadal reproductive status, and this potential can be further explored in aquaculture and environmental monitoring studies.
ISSN:2079-7737
2079-7737
DOI:10.3390/biology12111434