miR-19-3p Targets PTEN to Regulate Cervical Cancer Cell Proliferation, Invasion, and Autophagy
Background. Cervical cancer is the second most common cancer among women worldwide. Extensive studies have shown that microRNAs (miRNA/miR) can regulate the formation, progression, and metastasis of cancer. The purpose of this study was to investigate the effect of miR-19-3p on the proliferation, in...
Gespeichert in:
Veröffentlicht in: | Genetics Research 2023, Vol.2023, p.4784500-8 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background. Cervical cancer is the second most common cancer among women worldwide. Extensive studies have shown that microRNAs (miRNA/miR) can regulate the formation, progression, and metastasis of cancer. The purpose of this study was to investigate the effect of miR-19-3p on the proliferation, invasion, and autophagy of cervical cancer cells and to explore the underlying mechanism. Methods. SiHa and HeLa cells were transfected with miR-19-3p mimic and inhibitor. miR-19-3p and PTEN expression were detected using real-time quantitative PCR and western blot, respectively. The binding between miR-19-3p and PTEN was predicted using Targetscan7.2 and verified by a dual-luciferase reporter gene assay. The effects of miR-19-3p on cell invasion and proliferation were evaluated by Transwell assays and MTT, respectively. The effect of miR-19-3p on autophagy was observed using fluorescence microscopy. Results. The expression of miR-19-3p in cervical cancer tissues and SiHa and HeLa cells was significantly upregulated, whereas the expression of PTEN was significantly downregulated. PTEN was one of the direct targets of miR-19-3p. The miR-19-3p mimic significantly reduced the apoptosis rate and autophagy and promoted cell proliferation and invasion of the SiHa and HeLa cells. Conclusion. In summary, miR-19b-3p can target PTEN to regulate the proliferation, invasion, and autophagy of cervical cancer cells. Our findings indicate the potential of miR-19-3p as a target for cervical cancer treatment in the future. |
---|---|
ISSN: | 1469-5073 0016-6723 1469-5073 |
DOI: | 10.1155/2023/4784500 |