Photocatalytic CO2 Reduction to CH4 and Dye Degradation Using Bismuth Oxychloride/Bismuth Oxyiodide/Graphitic Carbon Nitride (BiOmCln/BiOpIq/g-C3N4) Nanocomposite with Enhanced Visible-Light Photocatalytic Activity

The use of visible-light-driven photocatalysts in wastewater treatment, photoreduction of CO2, green solar fuels, and solar cells has elicited substantial research attention. Bismuth oxyhalide and its derivatives are a group of visible-light photocatalysts that can diminish electron–hole recombinati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Catalysts 2023-03, Vol.13 (3), p.522
Hauptverfasser: Dai, Yong-Ming, Wu, Wu-Tsan, Lin, Yu-Yun, Wu, Hsiao-Li, Chen, Szu-Han, Jehng, Jih-Mirn, Lin, Jia-Hao, Liu, Fu-Yu, Chen, Chiing-Chang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The use of visible-light-driven photocatalysts in wastewater treatment, photoreduction of CO2, green solar fuels, and solar cells has elicited substantial research attention. Bismuth oxyhalide and its derivatives are a group of visible-light photocatalysts that can diminish electron–hole recombination in layered structures and boost photocatalytic activity. The energy bandgap of these photocatalysts lies in the range of visible light. A simple hydrothermal method was applied to fabricate a series of bismuth oxychloride/bismuth oxyiodide/grafted graphitic carbon nitride (BiOmCln/BiOpIq/g-C3N4) sheets with different contents of g-C3N4. The fabricated sheets were characterized through XRD, TEM, SEM-EDS, XPS, UV-vis DRS, PL, and BET. The conversion efficiency of CO2 reduction to CH4 of BiOmCln/BiOpIq of 4.09 μmol g−1 can be increased to 39.43 μmol g−1 by compositing with g-C3N4. It had an approximately 9.64 times improvement. The photodegradation rate constant for crystal violet (CV) dye of BiOmCln/BiOpIq of k = 0.0684 can be increased to 0.2456 by compositing with g-C3N4. It had an approximately 3.6 times improvement. The electron paramagnetic resonance results and the quenching effects indicated that 1O2, •OH, h+, and •O2− were active species in the aforementioned photocatalytic degradation. Because of their heterojunction, the prepared ternary nanocomposites possessed the characteristics of a heterojunction of type II band alignment.
ISSN:2073-4344
2073-4344
DOI:10.3390/catal13030522