Brain and eyes of Kerygmachela reveal protocerebral ancestry of the panarthropod head

Recent discoveries of fossil nervous tissue in Cambrian fossils have allowed researchers to trace the origin and evolution of the complex arthropod head and brain based on stem groups close to the origin of the clade, rather than on extant, highly derived members. Here we show that Kerygmachela from...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2018-03, Vol.9 (1), p.1019-7, Article 1019
Hauptverfasser: Park, Tae-Yoon S., Kihm, Ji-Hoon, Woo, Jusun, Park, Changkun, Lee, Won Young, Smith, M. Paul, Harper, David A. T., Young, Fletcher, Nielsen, Arne T., Vinther, Jakob
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent discoveries of fossil nervous tissue in Cambrian fossils have allowed researchers to trace the origin and evolution of the complex arthropod head and brain based on stem groups close to the origin of the clade, rather than on extant, highly derived members. Here we show that Kerygmachela from Sirius Passet, North Greenland, a primitive stem-group euarthropod, exhibits a diminutive (protocerebral) brain that innervates both the eyes and frontal appendages. It has been surmised, based on developmental evidence, that the ancestor of vertebrates and arthropods had a tripartite brain, which is refuted by the fossil evidence presented here. Furthermore, based on the discovery of eyes in Kerygmachela , we suggest that the complex compound eyes in arthropods evolved from simple ocelli, present in onychophorans and tardigrades, rather than through the incorporation of a set of modified limbs. The arthropod head is complex and its evolution has been difficult to reconstruct. Here, Park et al. describe new specimens of the Cambrian stem-group euarthropod Kerygmachela that preserve evidence of primitive compound eyes and a unipartite brain, providing insight into the structure of the early arthropod head.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-018-03464-w