Design and development of a dual-phase TRIP-TWIP alloy for enhanced mechanical properties

Triggering transformation induced plasticity (TRIP) and twinning induced plasticity (TWIP) mechanisms in metastable β titanium alloys (bcc, body centered cubic) have helped reaching unprecedented mechanical properties for Ti-alloys, including high ductility and work-hardening. Yet the yield strength...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:MATEC Web of Conferences 2020, Vol.321, p.11014
Hauptverfasser: Lilensten, Lola, Danard, Yolaine, Sun, Fan, Vermaut, Philippe, Perrière, Loïc, Joubert, Jean-Marc, Prima, Frédéric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Triggering transformation induced plasticity (TRIP) and twinning induced plasticity (TWIP) mechanisms in metastable β titanium alloys (bcc, body centered cubic) have helped reaching unprecedented mechanical properties for Ti-alloys, including high ductility and work-hardening. Yet the yield strength of such alloys generally remains rather low. So far, mostly single-phase metastable bcc alloys have been developed. In this study, a dual phase TRIP/TWIP alloy is designed and investigated. While the β-matrix is expected to display TRIP/TWIP deformation mechanisms, the addition of a second phase, α in the present study, aims at increasing the yield strength. The composition was designed in the Ti-Cr-Sn system, based on Calphad prediction and on the semi-empirical d -electron alloy design approach. Results were compared to the published full β Ti – 8.5Cr – 1.5Sn (wt%) TRIP/TWIP alloy. The dual-phase alloy was prepared and processed to reach the desired microstructure containing about 20% α. It displays remarkable mechanical properties such as a ductility of 29%, an ultimate tensile strength of 1200 MPa and a yield strength of 760 MPa, 200MPa higher than the Reference single-phase β alloy. Analysis of the mechanical properties and deformation microstructures confirm the TRIP and TWIP effects, validating the proposed approach.
ISSN:2261-236X
2274-7214
2261-236X
DOI:10.1051/matecconf/202032111014