Optimal Rate of Convergence for a Nonstandard Finite Difference Galerkin Method Applied to Wave Equation Problems

The optimal rate of convergence of the wave equation in both the energy and the L2-norms using continuous Galerkin method is well known. We exploit this technique and design a fully discrete scheme consisting of coupling the nonstandard finite difference method in the time and the continuous Galerki...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Applied Mathematics 2013-01, Vol.2013 (2013), p.196-204-421
1. Verfasser: Chin, Pius W. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The optimal rate of convergence of the wave equation in both the energy and the L2-norms using continuous Galerkin method is well known. We exploit this technique and design a fully discrete scheme consisting of coupling the nonstandard finite difference method in the time and the continuous Galerkin method in the space variables. We show that, for sufficiently smooth solution, the maximal error in the L2-norm possesses the optimal rate of convergence O(h2+(Δt)2) where h is the mesh size and Δt is the time step size. Furthermore, we show that this scheme replicates the properties of the exact solution of the wave equation. Some numerical experiments should be performed to support our theoretical analysis.
ISSN:1110-757X
1687-0042
DOI:10.1155/2013/520219