Facile Synthesis of Nb-Doped CoTiO3 Hexagonal Microprisms as Promising Anode Materials for Lithium-Ion Batteries

Bimetallic oxides are demonstrated to show better electrochemical performance than single transition metal oxides. Recently, ilmenite-type transition metal titanate (MTiO3, M = Fe, Co, Ni, etc.) is emerging as a promising anode for lithium-ion batteries (LIBs) due to its comparable theoretical capac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inorganics 2023-01, Vol.11 (1), p.10
Hauptverfasser: Li, Tao, Yu, Gengchen, Song, Minghui, Zhang, Qi, Li, Yifan, Bai, Xue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bimetallic oxides are demonstrated to show better electrochemical performance than single transition metal oxides. Recently, ilmenite-type transition metal titanate (MTiO3, M = Fe, Co, Ni, etc.) is emerging as a promising anode for lithium-ion batteries (LIBs) due to its comparable theoretical capacity and small volumetric change during cycling. However, the practical electrochemical performance is still harmed by its poor electronic conductivity. Herein, for the first time, a Nb-doping strategy is adopted to modify CoTiO3 hexagonal microprisms by a facile solvothermal method combined with an annealing treatment. Benefiting from the unique 1D morphology and the ameliorated conductivities induced by Nb-doping, the optimized Nb-doped CoTiO3 anode exhibits an improved lithium-storage capacity of 233 mA h g−1 at 100 mA g−1 after 100 cycles and excellent rate capability, which are superior to that of pure CoTiO3. This work sheds light on the potential application of titanium containing bimetallic oxide in the next-generation advanced rechargeable LIBs.
ISSN:2304-6740
2304-6740
DOI:10.3390/inorganics11010010