Novel Fuzzy-IWO Method for Reconfiguration Simultaneous Optimal DG Units Allocation

This paper presents a new hybrid method for optimal multi-objective reconfiguration simultaneous determining the optimal size and location of Distributed Generation (DG) in a distribution feeder. The purposes of this research are reducing the losses, improving the voltage profile and equalizing the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ravish/ha-yi hushmand dar sanat-i barq 2015-07, Vol.6 (21), p.13-20
Hauptverfasser: Hajar Bagheri, Mahmood Reza Shakarami
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a new hybrid method for optimal multi-objective reconfiguration simultaneous determining the optimal size and location of Distributed Generation (DG) in a distribution feeder. The purposes of this research are reducing the losses, improving the voltage profile and equalizing the feeder load balancing in a distribution system. Invasive Weed Optimization (IWO) is used to simultaneously reconfigure and identify the optimal capacity and location for installation of DG units in the distribution network. In order to facilitate the algorithm for multi-objective search ability, the optimization problem is formulated for minimizing fuzzy performance indices. The multi-objective optimization problem is transformed into a fuzzy inference system (FIS), where each objective function is quantified into a set of fuzzy objectives selected by fuzzy membership functions. The proposed method is validated using the IEEE 33 bus test system at nominal load. The obtained results prove this combined technique is more accurate and has an efficient convergence property compared to other intelligent search algorithms. Also, the obtained results lead to the conclusion that multi-objective reconfiguration along with placement of DGs can be more beneficial than separate single-objective optimization.
ISSN:2322-3871
2345-5594