Experimental quantum simulation of non-Hermitian dynamical topological states using stochastic Schrödinger equation

Noise is ubiquitous in real quantum systems, leading to non-Hermitian quantum dynamics, and may affect the fundamental states of matter. Here we report in an experiment a quantum simulation of the two-dimensional non-Hermitian quantum anomalous Hall (QAH) model using the nuclear magnetic resonance p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:npj quantum information 2022-06, Vol.8 (1), p.1-13, Article 77
Hauptverfasser: Lin, Zidong, Zhang, Lin, Long, Xinyue, Fan, Yu-ang, Li, Yishan, Tang, Kai, Li, Jun, Nie, XinFang, Xin, Tao, Liu, Xiong-Jun, Lu, Dawei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Noise is ubiquitous in real quantum systems, leading to non-Hermitian quantum dynamics, and may affect the fundamental states of matter. Here we report in an experiment a quantum simulation of the two-dimensional non-Hermitian quantum anomalous Hall (QAH) model using the nuclear magnetic resonance processor. Unlike the usual experiments using auxiliary qubits, we develop a stochastic average approach based on the stochastic Schrödinger equation to realize the non-Hermitian dissipative quantum dynamics, which has advantages in saving the quantum simulation sources and simplifying the implementation of quantum gates. We demonstrate the stability of dynamical topology against weak noise and observe two types of dynamical topological transitions driven by strong noise. Moreover, a region where the emergent topology is always robust regardless of the noise strength is observed. Our work shows a feasible quantum simulation approach for dissipative quantum dynamics with stochastic Schrödinger equation and opens a route to investigate non-Hermitian dynamical topological physics.
ISSN:2056-6387
2056-6387
DOI:10.1038/s41534-022-00587-3