Lie Symmetry Classification, Optimal System, and Conservation Laws of Damped Klein–Gordon Equation with Power Law Non-Linearity

We used the classical Lie symmetry method to study the damped Klein–Gordon equation (Kge) with power law non-linearity utt+α(u)ut=(uβux)x+f(u). We carried out a complete Lie symmetry classification by finding forms for α(u) and f(u). This led to various cases. Corresponding to each case, we obtained...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical and computational applications 2023-09, Vol.28 (5), p.96
Hauptverfasser: Zaman, Fiazuddin D., Mahomed, Fazal M., Arif, Faiza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We used the classical Lie symmetry method to study the damped Klein–Gordon equation (Kge) with power law non-linearity utt+α(u)ut=(uβux)x+f(u). We carried out a complete Lie symmetry classification by finding forms for α(u) and f(u). This led to various cases. Corresponding to each case, we obtained one-dimensional optimal systems of subalgebras. Using the subalgebras, we reduced the Kge to ordinary differential equations and determined some invariant solutions. Furthermore, we obtained conservation laws using the partial Lagrangian approach.
ISSN:2297-8747
1300-686X
2297-8747
DOI:10.3390/mca28050096