A Unique Bifuzzy Manufacturing Service Composition Model Using an Extended Teaching-Learning-Based Optimization Algorithm

In today’s competitive and rapidly evolving manufacturing environment, optimizing the composition of manufacturing services is critical for effective supply chain deployment. Since the manufacturing environment involves many two-fold uncertainties, there are limited studies that have specifically ta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2024-09, Vol.12 (18), p.2947
Hauptverfasser: Yang, Yushu, Lin, Jie, Hu, Zijuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In today’s competitive and rapidly evolving manufacturing environment, optimizing the composition of manufacturing services is critical for effective supply chain deployment. Since the manufacturing environment involves many two-fold uncertainties, there are limited studies that have specifically tackled these two-fold uncertainties. Based on bifuzzy theory, we put forward a unique bifuzzy manufacturing service portfolio model. Through the application of the fuzzy variable to express quality of service (QoS) value of manufacturing services, this model also accounts for the preferences of manufacturing firms by allocating various weights to different sub-tasks. Next, we address the multi-objective optimization issue through the application of extended teaching-learning-based optimization (ETLBO) algorithm. The improvements of the ETLBO algorithm include utilizing the adaptive parameters and introducing a local search strategy combined with a genetic algorithm (GA). Finally, we conduct simulation experiments to show off the efficacy and efficiency of the suggested approach in comparison to six other benchmark algorithms.
ISSN:2227-7390
2227-7390
DOI:10.3390/math12182947